PROJETO CONCEITUAL DE UMA FRESADORA DE ALTÍSSIMA VELOCIDADE DE CORTE

Walter L. Weingaertner

e-mail: wlw@emc.ufsc.br

Ricardo Compiani Tavares

e-mail: rct@lmp.ufsc.br

Laboratório de Mecânica de Precisão – LMP

Departamento de Engenharia Mecânica - Universidade Federal de Santa Catarina,

Caixa Postal - 476 - EMC Campus Universitário - Trindade

88.040-970 - Florianópolis - SC, Fone: (048) 331 9395 ou 234 5277 Fax: (048) 234 1519

Markus Müller

e-mail cassoli@ifr.mavt.ethz.ch Convênio ETH Zürich – UFSC Instituto de Robótica IFR – Laboratório de Mecânica de Precisão LMP Institut of Robotics ETH Center/ CLA CH 8092 Zürich, Fone _ _ 41 (0) 1 632 3568, Fax _ _ 41 (0) 1 632 1078

Resumo. Trata do projeto conceitual de uma fresadora de altíssima velocidade de corte (HSC), com três eixos controlados. Pretende-se obter cavidades de moldes e matrizes com rugosidade média R_a na ordem de 0,5 μ m e precisão dimensional de \pm 20 μ m, por fresamento de topo com fresa de ponta esférica. A solução escolhida para a fresadora HSC emprega uma base de granito com guias da mesa X e Y aerostáticas, acionadas diretamente por motores lineares, com controle de posição através de escalas eletro-ópticas. A árvore, montada na direção Z, é sustentada por mancais magnéticos, acionada diretamente por um motor de corrente alternada de freqüência variável, propiciando velocidades de até 40000 rotações por minuto e potência de acionamento nominal de 40 kW. As guias do cabeçote são lineares de esferas com fuso de alta precisão, acionado por um motor de corrente contínua, e escala eletro-óptica fechando a malha de controle.

Palavras-chave: Fresadora de altíssima velocidade, Projeto conceitual, Usinagem de cavidades, Motor linear, Mancais magnéticos.

1. INTRODUÇÃO

O Laboratório de Mecânica de Precisão, percebendo as necessidades da Indústria Brasileira de Matrizes em reduzir o tempo consumido na fabricação de matrizes e moldes com um adequado acabamento superficial, vem desenvolvendo, desde 1997, pesquisas na área de usinagem em altíssima velocidade de corte (HSC- *High Speed Cutting*), tanto em processos quanto em projeto, fabricação e montagem de máquinas-ferramentas especiais para HSC.

O fresamento HSC possibilita uma redução superior a 50% no tempo de fabricação de matrizes e moldes, sendo este um dos fortes motivos para que a indústria deste setor adote esta nova tecnologia de usinagem (Sahm, 1996, Schmitt, 1996 e Schulz, 1996).

Este artigo apresenta o projeto conceitual de uma fresadora HSC. Inicialmente, foram definidas as especificações da fresadora de altíssima velocidade de corte, Tabela 1.

Tabela 1. Classificação das especificações de projeto

N°	Requisito	Objetivo	Sensor	Saída Ind.
1	Custo da máquina	U\$ 200.000,00	livro caixa	>U \$ 200.000,00
2	Limite de rotação	40000 rpm	tacômetro	rpm máxima < 40000
3	Vibração da ferramenta	sem vibração	FFT(Fast Fourier Transformer) análise. de Fourier rápida	baixa qualidade superficial
4	Tempo de resposta do sistema	20μs	acelerômetro	erros de fabricação
			frequencímetro	acidentes
5	Rigidez na fix. da ferramenta	máxima	FFT	vibrações
6	Rigidez na fixação da peça	máxima	FFT	vibrações
7	Vibração (amortecimento)	ampl. máx. ≤ 25nm	FFT	erros de fabricação
		evitar freq. naturais		ressonância
8	Frequência de acidentes	nula	número de acidentes	ocorrência de acidentes
9	Tempo de resposta ao choque	nulo	proximidade	colisões, acidentes
10	Repetibilidade de medição	± 0,1%	escalas eletro-ópticas encoder	erros geométricos e dimensionais
11	Dinâmica dos acionamentos	excelente dinâmica	analisador de sistemas dinâmicos	alto tempo de resposta
12	Repetibilidade	± 0,1%	escalas eletro-ópticas encoder	erros maiores do que o tolerável
13	Precisão de medição	± 10nm	escalas eletro-ópticas encoder	erros maiores do que o tolerável
14	Dinâm. das guias e mancal	excelente dinâmica	FFT	alto tempo de resposta
15	Resolução de medição	0,1 μm	escalas eletro-ópticas encoder	erros maiores do que o tolerável
16	Rigidez das guias e mancal	máxima	FFT	vibrações
17	Precisão/repetibilidade guias	± 50nm/± 0,1%	classe de precisão	erros de fabricação
18	Poluição ambiental	mínima	ppm	contaminação ambiental
19	Batimento axial da árvore	0,001μm por volta	capacitivo/indutivo	erros de fabricação
20	Batimento radial da árvore	0,001μm por volta	capacitivo/indutivo	erros de fabricação
21	Deformação térmica	< 0,1%	máquina de medir por coordenadas	erros de fabricação
22	Atrito nas guias	nulo	FFT	erros de fabricação

23	Erro de planicidade	garantir tolerâncias geométricas na fresd.	máquina de medir por coordenadas	erros de fabricação
24	Erros dimensionais da peça	garantir tolerâncias	instrumentos medição	erros de fabricação
25	Inércia	mín partes móveis máx partes fixas	FFT	alto tempo de resposta baixa rigidez
26	Rugosidade da peça	Ra ≤ 0,1μm	rugosímetro	refugo
27	Erro de paralelismo	garantir tolerâncias geométricas na fresd.	máquina de medir por coordenadas	erros de fabricação
28	Erro de cilindricidade	garantir tolerâncias geométricas na fresd.	relógio comparador	erros de fabricação
29	Erro de perpendicularidade	garantir tolerâncias geométricas na fresd.	máquina de medir por coordenadas	erros de fabricação
30	Erro de concentricidade	garantir tolerâncias geométricas na fresd.	máquina de medir por coordenadas	erros de fabricação
31	Energia consumida	0,5 a 5kWh	Wattimetro	elevado custo de produção
32	% componentes recicláveis	máximo	visual	contaminação ambiental, sucatas
33	Torque mecânico	0,3 a 24N.m	torquímetro	força de usinagem insuficiente, alto tempo de resposta

2. ESTRUTURA DE FUNÇÕES E MATRIZES DE COMPARAÇÃO

Tendo-se uma idéia qualitativa e quantitativa dos requisitos do projeto da fresadora, identificados na fase anterior do projeto, partiu-se para o estabelecimento da estrutura de funções parciais, sendo geradas quatro possíveis estruturas funcionais da máquina-ferramenta, as quais satisfazem as especificações de projeto. No caso da fresadora, a função total da máquina é **fresar elementos tridimensionais**, conforme a Figura 1.

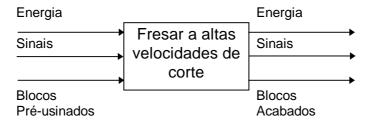


Figura 1 - Função total da fresadora

A determinação da estrutura de funções a ser empregada no projeto considera a máquina como um elemento com três subconjuntos básicos: ferramenta, peça e meio. A interrelação destes subconjuntos distintos, de acordo com as funções pré-definidas, propiciam a correta integração e funcionamento da máquina (Stoeterau, 1996, Weingaertner *et al*, 1996 e Tavares, 1995).

Cada uma das quatro estruturas funcionais levou à uma concepção ou arranjo diferenciado para a máquina-ferramenta:

i) a peça posicionada no plano XY, com a ferramenta deslocando-se no eixo Z;

- ii) a peça desloca-se segundo os eixos X, Y e Z, com a ferramenta fixa;
- iii) a ferramenta move-se nas direções Y e Z, com a peça montada sobre uma mesa em X;
- iv) a ferramenta movimenta-se segundo os eixos X, Y e Z, permanecendo fixa a peça.

Com o auxílio de matrizes de comparação, foram selecionados os componentes de mecânica de precisão da fresadora, tais como guias, mancais, além dos acionamento eletromecânicos e sensores da malha de controle (Back,1996, Pahl, 1996, Slocum, 1992).

2.1. Mancais

Tabela 2. Comparação entre os diversos tipos de mancais

Tipo de mancal	De contato		Lubrificado	a filme fluido	S/ contato
Características	Deslizante	Elem. Rol.	Óleo	Ar	Magnético
Rigidez	Alta	Moderada	Alta	Moderada	Alta
Amortecimento	Alto	Moderado	Moderado	Baixo	Moderado
Capacidade de carga	Alta	Moderada	Alta	Baixa	Moderada
Atrito estático	Elevado	Baixo			
Precisão de giro	Moderada	Boa	Muito alta	Muito alta	Muito alta
Custo	Baixo	Baixo	Moderado	Moderado	Muito alto
Desempenho em baixa velocidade.	Excelente	Bom	Excelente	Excelente	Bom
Desempenho em alta velocidade.	Deficiente	Regular	Bom	Excelente	Excelente
Estabilidade baixa temperatura	Boa	Boa	Boa	Excelente	Boa
Estabilidade alta temperatura	Ruim	Regular	Moderada	Excelente	Regular
Resistência a umidade	Regular	Boa	Boa	Boa	Boa
Vida	Baixa	Regular	Alta	Alta	Excelente

Para aplicações de altas velocidades (acima de 80.000 rpm) e alta precisão (isento de vibrações), os mancais de deslizamento ficam automaticamente descartados, e os de rolamento limitados à potências pequenas.

Os mancais lubrificados a filme fluido são utilizados em alta e ultraprecisão, sendo que os mancais hidrodinâmicos apresentam certas restrições de uso em função da geração de calor e instabilidades provenientes da cavitação do óleo na fenda de trabalho, com variações do centro de giro.

Os mancais hidrostáticos e aerostáticos têm se firmado como os principais mancais utilizados em máquinas ferramentas para alta precisão. Os mancais magnéticos são apresentados como uma excelente alternativa devido a elevada rigidez, altíssima velocidade de rotação (superior a 80000 rpm) e capacidade de carga. Porém, o alto custo associado a complexibilidade da eletrônica, e excessivo calor gerado, não os torna atrativos, justificando o seu uso apenas em aplicações especiais, como no caso de usinagem em altas velocidades.

2.2. Guias

A guia é um elemento fundamental, e constitui uma parte delicada de uma máquinaferramenta. Sua função é guiar a ferramenta na região de corte, e assim como todas as demais partes de uma máquina-ferramenta, esta deve ser construída o suficientemente rígida, para que as variações de forma que se originam da ação de forças estáticas e dinâmicas provenientes dos esforços de corte, assim como dos movimentos, não venham a exceder a limites estabelecidos, prejudicando a exatidão geométrica e dimensional, além da qualidade superficial.

TIPO **ABERTAS** FORMA CILÍNDRICAS **PRISMÁTICAS** RESTRIÇÃO INTERNA CUSTO Médio Médio Alto Baixo Alto CAPAC.DE CARGA Alta Alta Alta Alta Alta FABRICAÇÃO Fácil Média Média Difícil Difícil RIGIDEZ Alta Alta Alta Alta Alta AMORTECIMENTO Baixo Baixo Baixo Baixo Baixo PRESC. DESLOC. Alta Alta Alta Alta Alta DESGASTE Médio Médio Médio Médio Médio

Tabela 3. Matriz de comparação das guias de rolamento abertas

Tabela 4. Matriz comparação das guias de rolamento fechadas

TIPO	FECHADAS				
FORMA	CILÍNDRICAS			PRISMÁTICAS	
RESTRIÇÃO	SEM	INTERNA	EXTERNA	COM	SEM
CUSTO	Baixo	Médio	Médio	Alto	
CAPAC. DE CARGA	Alta	Alta	Alta	Alta	
FABRICAÇÃO	Fácil	Média	Média	Difícil	
RIGIDEZ	Alta	Alta	Alta	Alta	
AMORTECIMENTO	Baixo	Baixo	Baixo	Baixo	
PRESC. DESLOC.	Médio	Médio	Médio	Baixo	
DESGASTE	Médio	Médio	Médio	Médio	

Tabela 5. Matriz de comparação das guias a filme fluido com restrição parcial

TIPO	PARCIAL					
FORMA	CILÍNDRI		AS PRISMÁTIC		ÁTICAS	
REBAIXO	SEM COM		RESTRIÇÃO EXT.	SEM	COM	

CUSTO	Médio	Alto	Alto	Muito Alto	Muito Alto
CAPAC.DE CARGA	Média	Alta	Alta	Alta	Alta
FABRICAÇÃO	Fácil	Média	Média	Difícil	Difícil
RIGIDEZ	Média	Média	Média	Média	Média
AMORTECIMENTO	Média	Média	Média	Média	Média
PRESC. DESLOC.	Média	Alta	Alta	Alta	Alta
DESGASTE	Não	Não	Não	Não	Não

Tabela 6. Matriz de comparação das guias a filme fluido com restrição completa

TIPO			COMPLETA			
FORMA	CILÍNDRICAS			PRISMÁTICAS		
REBAIXO	SEM	COM	RESTRIÇÃO EXT.	SEM	COM	
CUSTO	Médio	Alto	Alto	Muito Alto	Muito Alto	
CAPAC.DE CARGA	Média	Alta	Alta	Alta	Alta	
FABRICAÇÃO	Fácil	Média	Média	Difícil	Difícil	
RIGIDEZ	Média	Média	Média	Média	Média	
AMORTECIMENTO	Alta	Alta	Alta	Alta	Alta	
PRESC. DESLOC.	Média	Alta	Alta	Alta	Alta	
DESGASTE	Não	Não	Não	Não	Não	

As guias de escorregamento ou com lubrificação hidrodinâmica não são utilizadas em máquinas-ferramentas para usinagem HSC em função do *stick-slip* elevado que apresentam. As guias, com elementos rolantes, são utilizadas com restrições pois as diferenças geométricas e dimensionais entre os elementos rolantes são fontes geradoras de vibrações e imprecisões no deslocamento. Como os carregamentos em máquinas de HSC são pequenos, a utilização da lubrificação a ar e a óleo, proporcionam características superiores, que vem a se somar as vantagens encontradas nas guias de rolamento.

2.2. Acionamentos

Os principais grupos de acionamentos empregados em máquinas-ferramentas são os servomotores elétricos e os acionamentos hidráulicos e pneumáticos. Servomotores apresentam vantagens em relação aos acionamentos hidráulicos e pneumáticos(Tavares, 1995):

- i) menor tempo de resposta;
- ii) excelente comportamento dinâmico;
- iii) controle relativamente mais simples (totalmente eletrônico);

- iv) na prática, podem ser considerados com comportamento linear, ao contrário dos acionamentos hidráulicos e pneumáticos (não-linearidades devido à compressibilidade do ar e variações na viscosidade do óleo com a temperatura);
- v) construção compacta;
- vi) grande gama de potência e torque mecânicos fornecidos;
- vii) maior precisão de posicionamento (na faixa sub-micrométrica);
- viii) menos sensíveis a vibrações.

Tabela 7. Matriz de comparação dos acionamentos

	MOTORES ELÉTRICOS ROTATIVOS					
	CA	MOI	OKES EEE IMIC	CC		
	CA					
		COM ESCOVAS	SEM ESCOVAS	MOTOR DE	SEM ESCOVAS	
		COM CARCAÇA	COM CARCAÇA	PASSO	SEM CARCAÇA	
					MOTOR DE TORQUE	
Custo	Baixo	Baixo/Médio	Médio/Alto	Médio	Muito Alto	
Dinâmica	Baixa	Boa	Boa	Excelente	Excelente	
Torque - Força	Alto	Alto	Alto	Médio	Muito Alto	
Movimento	Rotação	Rotação	Rotação	Rotação	Rotação	
Cursos	Ilimitado	Ilimitado	Ilimitado	Ilimitado	Ilimitado	
Controle	Simples	Simples	Complexo	Complexo	Complexo	
Precisão de giro	Baixa	Boa	Boa	Excelente	Excelente	
			LINEAR	RES		
	HIDRAÚLICO	os –		ELÉTRICOS		
	CILÍDRO H ID	. DE P	PASSO	SEM ESCOVAS	COM CONTATO	
			2			
Custo	Baixo	Mo	édio	Médio/Alto	Médio	
Dinâmica	Baixa	В	Boa	Boa	Excelente	
Força	Alta	A	Alta	Alta	Alta	
Movimento	Translação	Tran	slação	Translação	Translação	
Cursos	Limitado	Lim	nitado	Limitado	Limitado	
Controle Simples Complexo		plexo	Complexo	Complexo		
Prec. deslocam.	Baixa	В	Boa	Boa	Boa	

2.4. Sensores

São os componentes mais importantes no sistema de controle em malha fechada da mesa, cabeçote e árvore da fresadora, sendo responsáveis pela determinação da posição e/ou velocidade destes elementos móveis em tempo real. Sensores ou transdutores são elementos

constitutivos de um sistema de medição em geral, fornecendo sinais de medição analógicos ou digitais, sob a forma incremental ou absoluta.

Os sensores em máquinas-ferramentas HSC devem permitir leituras de grandezas medidas com precisão e resolução submicrométricas, e com avaliações automáticas dos valores reais.

ROTATIVOS LINEARES **ESCALA ENCODER** ESCALA INDUTIVA LASER **OPTOELETRÔNICA** INTERFEROMÉTRICO Baixo Baixo/Médio Médio Alto Custo Precisão Média/Alta Média/Alta Média Muito alta Faixa de Operação Limitado Ilimitada Limitado Limitado Estabilidade Alta Alta Alta Baixa Veloc. De leitura Alta Média Média Média

Tabela 8. Matriz de comparação dos sensores

2.5. Sistema de controle

O sistema de controle a ser adotado para a fresadora de altas velocidades depende pouco dos elementos constituintes da máquina-ferramenta em questão, tais como servomotores e sensores, guias e mancais ou da estrutura da mesma. Contudo, o sistema de controle está ligado diretamente ao processo em si, ou seja, o fresamento em altas velocidades de corte. Dentre os controladores atualmente utilizados para controlar uma planta tipo máquina-ferramenta, os mais utilizados são os digitais com capacidade de processamento de múltiplos eixos e árvores (Kirschnik, 1997, Distler, 1996 e Saffert *et al* 1996). Porém, no caso do fresamento em altas velocidades de corte, o processamento em tempo real exige o emprego de múltiplos microprocessadores de alta velocidade, ou até mesmo levando-se ao emprego de Processadores Digitais de Sinais (*Digital Signal Processing*- DSP) muito mais velozes e com uma maior capacidade de controlar múltiplos eixos e árvores do que os microprocessadores.

Outra possibilidade a ser analisada é o emprego de controle adaptativo em tempo real, o qual permite controlar otimamente a fresadora segundo um modelo idealizado, atuando e modificando diretamente a planta em função de variações da dinâmica da fresadora.

A implementação deste projeto está sendo realizada experimentalmente em um centro de usinagem nb-h 65 da Thyssen Hüller Hille, empregando um cabeçote de alta freqüência IBAG HF 200 MA 40 K com cone de fixação HSK E 50 e mancais magnéticos e seu controle da MECOS Traxler, ambos da Suíça.

3. CONCLUSÃO

Dentre as possibilidades viáveis para a concepção e construção da máquina, selecionouse quatro formas construtivas as quais atendem as exigências previamente reconhecidas através do método da casa da qualidade. Todas estas soluções integram sistemas mecânicos e eletrônicos de alta precisão, contudo apresentam algumas particularidades quanto à tecnologia empregada. Como procedimento para comparação e escolha da solução ótima para o problema, optou-se pelo emprego da matriz de avaliação, na qual estabeleceu-se uma das soluções como referência. Logo, tomando-se por base as especificações de projeto, determinou-se a matriz para a comparação das quatro soluções propostas previamente. Em seqüência, foram obtidos os arranjos possíveis da fresadora de altíssima velocidade de corte, selecionando-se o mais adequado às exigências técnicas do projeto. Esta seleção foi feita através do método da matriz de avaliação, na qual estabeleceu-se um dos arranjos como solução-referência. A solução está indicada na Tabela 9.

Tabela 9. Escolha dos elementos mais apropriados para a solução com 3 eixos

COMPONENTE	CARACTERÍSTICAS
Base	
 Material 	Granito
 Arranjo 	Simples
Guias X e Y	
• Tipo	Aerostáticas, prismática ou tipo sapata
 Material 	Aço
 Acionamento 	Motores lineares CC brushless
 Controle 	Escala eletro-óptica
Guia Z	
• Tipo	Lineares de esferas recirculantes
 Material 	Aço
 Acionamento 	Motores lineares CC brushless
 Controle 	Escala eletro-óptica
Árvore	
 Mancal 	Magnético
 Acionamento 	Motor CA de alta frequência
Controle	Sensores de corrente
Ferramenta	
 Acoplamento 	Mecânico permanente, cone ISO
Peça	
 Fixação 	Mecânica
Controle	CNC tempo real
Meio Ambiente	20 ± 0,1° C

Agradecimentos

Os autores agradecem pelo apoio financeiro do CNPq (bolsa de Doutorado) à ETH Zürich bem como às Empresas IBAG e MECOS Traxler pela cessão do cabeçote de alta freqüência com mancais magnéticos que viabilizaram a realização deste trabalho.

REFERÊNCIAS

Back, N., Forcellini, F. Projeto Conceitual. Apostila do Curso de Pós-Graduação em Engenharia Mecânica, UFSC, Florianópolis, SC, 1996.

Distler, H., Eberlein W. HSC-CNC: Computer Numerical Control Systems that Master High-Speed Cutting. Seminário de Usinagem com Altíssima Velocidade de Corte. Fresamento, Torneamento, Furação. Universidade Metodista de Piracicaba, Santa Bárbara d'Oeste, SP, 1996.

Kirschnik, M. Características Técnicas de Comando Numérico Computadorizado para HSC. 2° Seminário Internacional de Alta Tecnologia. Usinagem com Altíssima

- Velocidade de Corte e Alta Precisão. Universidade Metodista de Piracicaba, Santa Bárbara d'Oeste.
- Pahl, G., Beitz, W. Engineering Design: A Systematic Approach. Springer Verlag, 2nd. Ed., London, 1996.
- Saffert, E., Schäfel, Chr., Kallenbach, E. Control of an Integrated Multi-Coordinate Drive. Faculty of Mechanical Engineering, Technical University of Ilmenau, Ilmenau, Germany, 1996
- Sahm, D. The Tecnology of High-Speed Cutting. Seminário de Usinagem com Altíssima Velocidade de Corte. Fresamento, Torneamento, Furação. Universidade Metodista de Piracicaba, Santa Bárbara d'Oeste, SP, 1996.
- Schmitt, Th. High Speed Milling Machines. Seminário de Usinagem com Altíssima Velocidade de Corte. Fresamento, Torneamento, Furação. Universidade Metodista de Piracicaba, Santa Bárbara d'Oeste, SP, 1996.
- Schulz, H. High Speed Machining. Seminário de Usinagem com Altíssima Velocidade de Corte. Fresamento, Torneamento, Furação. Universidade Metodista de Piracicaba, Santa Bárbara d'Oeste, SP, 1996.
- Stoeterau, R. Desenvolvimento de Máquinas-Ferramentas para Usinagem de Alta e Ultra-Precisão (com Ferramenta de Geometria Definida). Qualificação para Tese de Doutorado em Engenharia Mecânica, Curso de Pós-Graduação em Engenharia Mecânica, UFSC, Florianópolis, SC, .1996.
- Slocum, A. Precision Machine Design. Prentice Hall, Englewood Cliffs, NJ, USA, 1992.
- Tavares, R. C. Projeto de Posicionador de Ultraprecisão para Aplicações em Micromecânica/ Microeletrônica. Dissertação de Mestrado, Curso de Pós-Graduação em Engenharia Mecânica, UFSC, Florianópolis, SC, 1995.
- Walz, T. Experience in High Speed Machines with Direct Drives. Seminário de Usinagem com Altíssima Velocidade de Corte. Fresamento, Torneamento, Furação. Universidade Metodista de Piracicaba, Santa Bárbara d'Oeste, SP, 1996. SP, 1997.
- Weingaertner W., Tavares, R., Stoeterau, R., Peres, R., Pereira, M., Vivanco, H. Desenvolvimento de uma Retificadora para Obtenção de Superfícies com Qualidade Nanométrica. LMP, Curso de Pós-Graduação em Engenharia Mecânica, UFSC. VII Congresso Nacional de Ingeníeria Mecânica, Valdivia, Chile, 1996.

HIGH-SPEED CUTTING MILLING MACHINE DESIGN

Abstract. The present paper proposes to present a concept design of high-speed cutting milling machine (HSC), with three axis controlled, destined of the cutting dies and matrices by top milling with tool of tip ball, to obtain surfaces with superficial quality $R_a=0.5\,\mu\mathrm{m}$ and dimensional precision of \pm 20 $\mu\mathrm{m}$. The solution selected for milling machine HSC use a granite base with aerostatic guides in X e Y of table, direct driven of linear motors, with position control through electrooptic scales. The spindle in Z is supported by two magnetic bearings and direct driven by a high frequency CA motor, propitiating speeds up to 40 000 rpm at 40 KW. The milling head is mounted on linear guides with high precision recirculating ball screw, driven by CA motor, with electrooptic scale for feedback control.

Key words: High-speed cutting milling machine, Design concept, Cutting of cavities, Linear motor, Magnetic bearings.